Package bytehub
ByteHub provides an easy-to-use Feature Store, optimised for time-series data. It requires no complex infrastructure setup, and can be run locally, connected to a remote database/file storage, or run in a cloud-hosted mode. ByteHub uses Dask for data storage, allowing it to be scaled to large datasets and cluster compute environments.
Example usage for a local SQLite feature store:
import bytehub as bh
fs = bh.FeatureStore()
Remote feature stores can be accessed using a SQLAlchemy connection string, e.g.:
fs = bh.FeatureStore('postgresql+psycopg2://user:pass@host:port/bytehub')
Cloud-hosted feature stores can be accessed via a REST API endpoint:
fs = bh.FeatureStore('https://api.bytehub.ai/')
or simply use the following to access ByteHub's cloud service:
fs = bh.CloudFeatureStore()
See https://docs.bytehub.ai for examples and tutorials.
Sub-modules
bytehub.cloud
bytehub.core
bytehub.exceptions
-
Exception raised by Feature Store objects
Functions
def FeatureStore(connection_string='sqlite:///bytehub.db', **kwargs)
-
Factory method to create Feature Store objects.
Args
connection_string
:str
- SQLAlchemy connection string for database containing feature store metadata (defaults to local sqlite file) or an HTTPS endpoint to a cloud-hosted feature store.
**kwargs
- Additional options to be passed to the Feature Store constructor.
Returns
Union[CoreFeatureStore, CloudFeatureStore]
- Feature Store object.